Aggressive mimics profit from a model-signal receiver mutualism.
نویسندگان
چکیده
Mimetic species have evolved to resemble other species to avoid predation (protective mimicry) or gain access to food (aggressive mimicry). Mimicry systems are frequently tripartite interactions involving a mimic, model and 'signal receiver'. Changes in the strength of the relationship between model and signal receiver, owing to shifting environmental conditions, for example, can affect the success of mimics in protective mimicry systems. Here, we show that an experimentally induced shift in the strength of the relationship between a model (bluestreak cleaner fish, Labroides dimidiatus) and a signal receiver (staghorn damselfish, Amblyglyphidodon curacao) resulted in increased foraging success for an aggressive mimic (bluestriped fangblenny, Plagiotremus rhinorhynchos). When the parasite loads of staghorn damselfish clients were experimentally increased, the attack success of bluestriped fangblenny on damselfish also increased. Enhanced mimic success appeared to be due to relaxation of vigilance by parasitized clients, which sought cleaners more eagerly and had lower overall aggression levels. Signal receivers may therefore be more tolerant of and/or more vulnerable to attacks from aggressive mimics when the net benefit of interacting with their models is high. Changes in environmental conditions that cause shifts in the net benefits accrued by models and signal receivers may have important implications for the persistence of aggressive mimicry systems.
منابع مشابه
Cleaner wrasse mimics inflict higher costs on their models when they are more aggressive towards signal receivers.
Aggressive mimics are predatory species that resemble a 'model' species to gain access to food, mating opportunities or transportation at the expense of a signal receiver. Costs to the model may be variable, depending on the strength of the interaction between mimics and signal receivers. In the Indopacific, the bluestriped fangblenny Plagiotremus rhinorhynchos mimics juvenile cleaner wrasse La...
متن کاملMimicry in coral reef fish: how accurate is this deception in terms of color and luminance?
Batesian and aggressive mimics are considered to be under selective pressure to resemble their models, whereas signal receivers are under selection to discriminate between mimics and models. However, the perceptual ability of signal receivers to discriminate between mimics and models is rarely studied. Here we examined 15 model–mimic coral reef fish pairs using nonsubjective methods to judge th...
متن کاملImplementation of an adaptive burst DQPSK receiver over shallow water acoustic channel
In an environment such as underwater channel where placing test equipments are difficult to handle, it is much practical to have hardware simulators to examine suitably designed transceivers (transmitter/receiver). The simulators of this kind will then allow researchers to observe their intentions and carry out repetitive tests to find suitable digital coding/decoding algorithms. In this p...
متن کاملEfficiency of Target Location Scenarios in the Multi-Transmitter Multi-Receiver Passive Radar
Multi-transmitter multi-receiver passive radar, which locates target in the surveillance area by the reflected signals of the available opportunistic transmitter from the target, is of interest in many applications. In this paper, we investigate different signal processing scenarios in multi-transmitter multi-receiver passive radar. These scenarios include decentralized processing of reference ...
متن کاملTypical Ka band Satellite Beacon Receiver Design for Propagation Experimentation
This paper presents the design and simulation of a typical Ka band satellite beacon receiver for propagation experimentation. Using satellite beacon signal as a reference signal in satellite wave propagation study, is one of the most important methods. Satellite beacons are frequently available for pointing large antennas, but such signals can be used for measuring the effect of natural phenome...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings. Biological sciences
دوره 274 1622 شماره
صفحات -
تاریخ انتشار 2007